Array Multiplication Expressions

Exercise code

%% Practical 3 debugging exercise

% Add your name and student ID here

% Remember you can suppress output by adding the ;


%% Part 1

% Create an array that contains the cubic roots

% of all elements of array A

clear all

A = [0 1 8 27 64]

cubic_root = A^(1/3) % **** There is a dot missing here

%------------------------------------------------

%% Part 2

% Plot & sum an array containing the series 1/n^2

% for integers from 1 to 100

clear all

x=[1:100]

y=1/x^2 % **** There are two dots missing here

plot(x,y)

sum(y) % The answer should be 1.6350

%------------------------------------------------

%% Part 3

% Conjecture that the limit of sin(x)/x = 1 as x -> 0

% by evaluating sin(x)/x for x = 0.1, 0.01,., 0.00000001

% Find the positions where it is 1 for the given precision

clear all

format long % uses 16 digits for each value

x=0.1^[1:8] % **** One dot missing here

y=sin(x)/x % **** One dot missing here

error = 1-x(8)

c=find(y>=error) %finds indices of elements of array that are bigger

%than defined value of error

plot(x,y)

%------------------------------------------------

%% Part 4

% Find out why this code is not working

% Update the value of maxX to make it work properly

clear all

maxX = 9 % change this value

X=[1:2:maxX]

Y=[10:-1:1]

X+Y

%------------------------------------------------

%% Part 5

% Find the sum of the series (n+1)*n^(1/3)

% for n = 1 to 100

% Your answer should be 2.047524258847828e+004

clear all

n_plus_1 = [2:101]

n_cubic_root = [1:100]^(1/3) % **** One dot is missing here

% note that the above line is a shorter version of part 1 sum_of_series = sum(n_plus_1*n_cubic_root) % **** add dot for the %array multiplication