Browse the glossary using this index
Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL
D |
---|
Domain adaptation | |||
---|---|---|---|
Domain adaptation is learning a discriminative classifier or other predictor in the presence of a shift of data distribution between the source/training domain and the target/test domain [GUA+16]. References | |||
Dropout | ||||
---|---|---|---|---|
Deep neural networks (DNNs) employ a large number of parameters to learn complex dependencies of outputs on inputs, but overfitting often occurs as a result. Large DNNs are also slow to converge. The dropout method implements the intuitive idea of randomly dropping units (along with their connections) from a network during training [SHK+14]. References
| ||||