Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

F

Picture of Yee Wei Law

Fidelity

by Yee Wei Law - Sunday, 3 September 2023, 8:55 AM
 

This entry continues from discussion of trace distance.

[Des09, (22.8)].

[Hay17, Sec. 3.1.2 and Sec. 8.2].

[Le 06, (7.20)].

[Dio11, (6.19)].

[NC10, (9.2)].

[BS98, Sec. II].

References

[BS98] C. Bennett and P. Shor, Quantum information theory, IEEE Transactions on Information Theory 44 no. 6 (1998), 2724–2742. https://doi.org/10.1109/18.720553.
[Des09] E. Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511803758.
[Dio11] L. Diosi, A Short Course in Quantum Information Theory: An Approach From Theoretical Physics, second ed., Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16117-9.
[Hay17] M. Hayashi, Quantum Information Theory: Mathematical Foundation, second ed., Springer Berlin, Heidelberg, 2017. https://doi.org/10.1007/978-3-662-49725-8.
[Le 06] M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation, Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511755361.
[NC10] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th anniversary ed., Cambridge University Press, 2010. Available at http://mmrc.amss.cas.cn/tlb/201702/W020170224608149940643.pdf.
Tags: